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Abstract ing blue noise ordered dither arrays based on manipula-
tion of power spectra is described by Mitsa and Parker

The Void-and-Cluster algorithm for designing dither ar-
rays is both simple and general. Considerable attention Filter Width vs. Extent
has been placed on the selection of various linear and
nonlinear cluster-finding filters. In this paper, the im- Central to the void-and-cluster method is the mechanism,
portance of separating the treatment of the shape am filter, for finding the center of voids or groups of ma-
spatial extent of cluster-finding filters is illustrated. Lack jority pixels, and finding the center of clusters or groups
of such separation may be a source of confusion in othef minority pixels. Such filters should have at least the
filter design efforts. The effect of finite precision on thefollowing three properties:
implementation of these filters is analyzed. For al. Isotropic about the center point,
Gaussian filter, the limits imposed by the floating-point2. Higher weight for locations closer to the center point,
exponent and mantissa are shown to define the limits of and
spatial extent and discrimination. 3. Unbounded in extent.

Introduction While a number of mechanisms can satisfy these
properties, a symmetric Gaussian is perhaps the simplest
High quality dithered images can result from processe® describe:
that employ neighborhood operations, such as error dif- L o s n
fusion, or from multipass processes that use iterative G(r) =e20” Wherer?=x2 + y
optimization algorithms. But for high speed and simplic-
ity of implementation, ordered-dither methods are in a
distant first place. This is particularly true for video ap-
plications where a high premium are placed on these re-
guirements. Ordered dither or screening techniques are
point operations that simply compare the current pixel
with a periodic and deterministic threshold array. G(r)
The first step in creating an ordered dither thresh-
old array is the design of a template which ranks the
order of the thresholds. Subsequent steps normalize this
template by including tone correction and range adjust-

2

ment to account for the number of input and output lev- ~— exten. R,
els. The design of the template is central to the nature of '
the perceived textures in the output. c 1+ 2 3 4 5 6 7 8

The method of recursive tessellatigzenerates dis- r'c
persed-dot ordered dither templates of which the familiaFigure 1. Width vs. extent of a radial slice of a 2D Gaussian
patterns described by Beyare a subset. The method builds function
the template by recursively filling the center of the largest
voids in the intermediate patterns. This method was gener- This function is shown in Figure 1 where the two
alized by the void-and-cluster metfiddis generally agreed characteristics of widthg, and extent (or region of sup-
that blue noiseproperties are the most pleasant for displayport), R, are illustrated.
devices where disperse-dot dither patterns can be accom- It was first reportetithat a good example of a void-
modated. While the void-and-cluster method is extremelyand-cluster finding filter was a simple Gaussian with a
simple, it is versatile enough to generate arrays with bluéxed width of 1.5, in units of pixel periods. More de-
noise properties as well as recursive-tessellation arrays. tails of the associated experiments with the filter width
Recent work®include the incorporation of the visual were later presentéd
system and printer models in the design of blue noise or- In typical signal processing applications, the con-
dered dither arrays. A very different method for generattribution of such a filter looses its significance beyond
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an extent of 8 or 40. The key point of this paper is that Figure 4 illustrates the problem of finding the center of
this is not the case when used as a void or cluster findhe largest void in a long wavelength situation. In this simple
ing filter! As can be seen in Figure 2, the ability of aexample, a single minority pixel is present in a 16 by 16
Gaussian to discriminate between adjacent concentriarray. In Figure 4b, the entire 16 by 16 period is tiled a few
“shells” of more distant pixels continues unbounded, andimes to help visualize the center of the void; the void loca-
this should not be prematurely constrained. tion is circled. The void-finding filter will identify incorrect

void centers if the extent is limited, regardless of the value

14 of 0. In Figure 4a, the correct pixel C will be located for all
12 extents greater thafi2s. Examples of incorrect identifica-
tions are pixel A when R=6, and pixel B when R=10.
10 -
= 8
P ]
E 61 [ A
Q 1 a L ] 1
= 4 o| o of o
o B
= 2
£ o] o o] o]
0 — c ' . . '
0123456 7 8 910111213 c| o] 0| ©
rl'o
Figure 2. Ratio between neighboring concentric shells of a (a) (b)

Gaussian increases with distance Figure 4. Locating the center of the largest void in a long wave-
The need to make the filter width adapt to the prin_Iength pattern. (a) The resulting locations, A, B, and C, using

. . . .. filters with different extents, R=6, R=10, and R>11.3, respec-
cipal wavelength (average distance between mlnorlt)zively. (b) Tiling the pattern in (a) with the true void center

pixels) in subsequent studié% may be due to the limit- .

ing of the filter extent. If untruncated, the use of aC'rdEd'

Gaussian in the array generation process results in ex- )

cellent patterns at all gray levels. _ Figure 5a shows a g_=1/25|6attern_at 50 d_pl result-
Of course the use of finite computational tools will iNg from the use of a dither array with the incorrectly

set some limit on the extent, but this limit turns out to bddentified void pixel A, and Figure 5b shows the pattern

quite generous. There are two numbers that restrict théith the correct void pixel C identified.

effective extent in the computation of Gaussian filtering,

the size of the exponent and mantissa of the floating point . . . . . . . . o T +

representation, which will now be examined separately. ’ T

Exponent Limit

Figure 3 illustrates the components of a floating point

number. The exponent is allocated E bits, and the man- (a) (b)
tissa M bits. Typical values for single precision are E=7

and M=23; For double precision, E=10 and M=52.

Sign Sign: Exponent Mantissa
1bit| 1bit, E bits M bits

Figure 3. Typical bit allocation in a floating point number . .
(a) (b)
The value of E limits the extent R of G(r) in cases of
long principle wavelength. The smallest number that cafrigure 5. Resulting periodic patterns based on different void
be digitally represented is finding criteria. (a) Using location A from Figure 4a, and (b)
R? using the correct location C.

G(R)=e 2 =27,

or R= U-\/2 E n2 . * R=6 and R=1@re now replaced witR=5 and R=8.3gspectively

T g=1/256should now be read as=2/256
So for single precision, R 13.35, and for double

precision, R= 37.70 ¥ Figure 5a has now been replaced. Original Figures are shown

in the gray box.
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Mantissa Limit

The number of mantissa bits, M, limits the extent R of G(r) in
cases of short principle wavelength that occur near g=1/2. In
such cases, the problem is not the absolute value of the contri-
bution of a pixel, but its value relative to the strongest contrib-
uting pixel. Since pixels closer to the filter center are “seen”
much brighter, the situation is analogous to detecting candles
next to the sun. In the presence of a closer pixglthtreffec-

tive filter extent is the farthest pixel at R that will still contrib-
ute to the convolution. This is governed by the size of M:

G(ry) ~oM
G(R) '

or R=2MIn207 +5,

a b
In short wavelength cases, the worst casg #st. @) ()
For the case af = 1.5, R= 8.53 for single precision and rigyre 7. Resulting periodic patterns based on different clus-

R=12.78 for double precision. e ter finding criteria. (a) Using location A from Figure 6, and
Figure 6 illustrates the problem of finding the center of(b) using the correct location C.

the largest cluster in a short wavelength pattern. This ex-

ample recursive tessellation pattern is chosen because the

correct answer is well known. The same extents are used as

in Figure 4, resulting in the identification of pixels A, B, .

and C. The tiny contribution from the absence of the one Blue Noise Example

black pixel not in the checkerboard must be felt in the pres- L ) o

ence of many other much weightier contributions surround? he examples in Figure 4 and Figure 6 indicate how the

ing the candidate central pixels to make a difference. Notgoid-and-cluster method can be used to automatically

again that these results are independent of the filter widthgenerate recursive tessellation arrays. The more impor-
Figure 7a shows a g=126/256 pattern at 50 dpi retant use of the method is, of course, the.generatlon of

sulting from the incorrect identification of cluster pixel dither templates that can produce blue noise patterns. In

A, and Figure 7b shows the pattern with the correct clusEigure 8, two 64 by 64 dither patterns of gray level g=4/
ter pixel C identified. 256 are displayed at 50 dpi with the void-and-cluster

method using the same width of= 1.5, but different
E B EEBE * filter extents. The patterns in both (a) and (b) include 4
EHEEEBR periods to illustrate the wrap-around effects, Figure 8a
. ...... resulted from a Gaussian filter with an extent of ordy 3
- = 4.5, and resembles the Figure 4 from Lin’s p&pme-
|

HE
........ sented at this conference last year. In that paper, the lack
L ... of an adaptive width was cited as the shortcoming. The
actual shortcoming is due to the truncation of the filter
in that simulation. Figure 8b, shows the more uniform
pattern that results when a filter with any extent greater
than 8 is used.

Conclusion

A key property of a Gaussian filter as a void-and-cluster
finding filter is its unbounded extent. Unnecessarily trun-
cating its extent can produce unwanted asymmetries in
both longand short principle wavelength patterns. This
paper demonstrated this for the cases of recursive tessel-
lation and blue noise dither templates. Adapting filter
widths to the principle wavelength (or gray level) does
not appear to be have an appreciable effect on quality.

. . . * Figures 6 and 7a have now been replaced. Original Figures are
Figure 6. Locating the center of the largest cluster in a short wave-  shown in the gray boxes.

length pattern. The resulting locations A, B, and C, using filters with ; ;
different extents, R=6, R=1Gnd R>11.3, respectively. t R=6 and R=1@re now replaced witR=5 and R=8.3gespectively
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(b)

10.

Figure 8. Long wavelength patterns generated with identical filter

widths ofo =1.5, but different extents, (a) R=4.5, and (b) R>8.
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